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1. The frequencies of the lines in the vibration-rotation
spectrum of a diatomic molecule may be obtained unambiguously
by the application of the classical quantum dynamics to a simple
molecular model. The dominant term in the intensities of these
lines has been obtained by Fowler * from the summation rules; this,
and the next term, were computed by Kemblef from an application
of the correspondence principle to a three-dimensional model. But
the details of these calculations are not free from ambiguity. For,
in the first case, the weight of the states, and, in the second, the
method of averaging over transitions, is arbitrary. For the outer
lines of the band this ambiguity is negligible; for the inner ones,
and particularly for the missing central line, it is not.

Now the new mechanics J gives a precise solution of this problem,
and might accordingly be expected to decide definitely the in-
tensity of the null line, and the value of the higher terms in the
intensities of the outer lines. The purpose of this note is to obtain
the solution, and to compare it with previous results, and with
the results of experiment.

The problem has been treated by Brillouin§. Brillouin's chief
conclusions are (1) that, contrary to the contention of Heisenberg||,
the new mechanics does not necessarily give the same energies as
the classical theory with the introduction of half-integral quantum
numbers; and (2) that, if Heisenberg's result were correct, the new
mechanics would account for the disappearance of the central line.
He uses Cartesian coordinates (qiqs), and their corresponding
momenta (Pip2)- He imposes the constraint

= a\
and the single quantum condition

for the rotational motion, where [ab] is the Poisson Bracket of

• Fowler, Phil. Mag. vol. XLIX, p. 1272 (1925).
t Kemble, Phys. Rev. vol. xxv, p. 1 (1925).
% Dirac, Proc. Roy. Soc. A, vol. ex, p. 561 (1926); Born, Heisenberg, Jordan,

Zeit.f. Physik, vol. xxxv, p. 557 (1926).
§ Brillouin, C.R. vol. CLXXXO, p. 374 (1926).
|| Heisenberg, Zeit. f. Physik, vol. xxx, p. 879 (1925); Born und Jordan, Zeit.

f. Physih, vol. xxxrv, p. 858 (1925).
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a and b. On the other hand, the Heisenberg-Dirac* quantum
conditions reduce, in this case, to a single condition

which cannot be reduced to the form (1). Moreover, in the Hamil-
tonian used by Brillouin the coupling of the kinetic energies of
rotation and vibration is neglected. Finally, the problem is treated
in two dimensions, so that we should not expect f correct values
for the intensities. Brillouin does not give his solution in Retail.
He does give the intensities for the case of vanishing coupling, and
for this case gets the same intensities for all lines of a band. But
it may readily be shown that the differential equation is regular,
uniformly in the coupling parameter A as this tends to zero. It
follows that the argument cannot explain the absence of the central
line for the small finite values of A which occur. In fact we shall
show that, in the two-dimensional case, the central line would be
present.

2. The dynamical problem. We may take for model two point-
atoms attracting each other radially. If the masses of the atoms
be m^ and m2, then the classical Hamiltonian, after the elimination
of the centre of gravity, becomes

(2) H = 1 (pB» + Pu» + ft«) + Ux (x* + y* + *•),

where

(3) 1 = 1 + 1 ; X^X1-X2]
/LA wij m 2

(rox + m2) px = m.,pXl - m^pXl.
Since we shall not ultimately want x^y-fa, x^y^, and since the elimi-
nation of the centre of gravity (3) holds in the quantum theory, we
may take (2) as Hamiltonian. There is as yet no adequate reason
for not choosing some classically equivalent form. The only other
result which we shall take over directly from the classical theory
is the expression for the energy radiated per second. We shall use
this in terms of Cartesian coordinates and accelerations %; and we
shall not be inconsistent if we take the Hamiltonian in terms of
them.

In the classical solution it is convenient to use polar angle
variables. These cannot be represented by matrices, and we shall

• Dirao, Proc. Roy. Soc. A, vol. ex, p. 561 (1926).
t Kemble, Phys. Rev. vol. xxv, p. 1 (1925).
j Heisenberg, Zeit. f. Physik, vol. xxxrrr, p. 879 (1925); Born und Jordan,

Zeit. f. Physik, vol. xxxrv, p. 858 (1925).
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accordingly adopt the more general methods developed by Dirac*.
We want a canonical transformation to unif ormizing variables such
that xyz shall be periodic in the angle variables. Classically we
should obtain this by three successive transformations: introduc-
tion of polar coordinates, in which the Hamilton-Jacobi equation
separates; elimination of the nodes; and uniformization of the
vibration-rotation. Dirac f has shown that there is a canonical
transformation equivalent to the first two:

(4) r* = a? + Jp + z*i VT = X-Px + lTy + Z-Tt-
lh,

& = r-W (k? - p2)-* (z + i [kz]) k*\
h* = J V + Sxmx* = \hj + 2 , (yPl - zVvf,

where Pz~P~ £^«. ka = k— \h+, h^==^-h.

[In general we write a1 = a + \h+; ai = a — \h+, if a is an action
variable.] We shall use only the following information about this
transformation:

1. It is canonical.
2. The values of xyz obtained by the inversion of (4) are:
(5) z = |r(TD2e* + roie-**),

_ . (* + Pi) & + Pi + K)
11 k (k + hj

K) ' a "" h(k-h0)
_ , (t + ftXt + ft-*,)

22 t (t - A*)

3. The transformed Hamiltonian is

(7) H-

The third transformation requires certain hypotheses about U;
in analogy with the classical solution | we shall suppose that the

* Dirac, Proe. Boy. Sex. A, vol. ex, p. 561 (1026); Bom, Heisenberg, Jordan,
Ztit.f. Physik, vol. xxxv, p. 557 (1926).

t Dirac, Proc. Roy. Soc. A, vol. cxi, p. 281 (1926).
j Bom, Atommechanik, § 20.
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molecule can rotate uniformly; that this rotation is stable; and
that the amplitude of the oscillations about it which do in fact
occur is small compared with the mean distance of separation of
the atoms. Then we must have

when we substitute the proper quantum numbers for k, and the
corresponding c-number for r. We shall take over this c-formula,
which may be justified physically, and write

(8) -^FW)= fl^-ft) = u> W <Def-)>
where k and a are ^-numbers. Further, we set r = a (k) + p, and
thus obtain from (1) and (8), the expansion

which converges by hypothesis. In (7 a)

W + = <

We may note further that

but that

(9) ^ = - t ^ = ^ ) -

The retention of first order terms in A does not affect the fre-
quencies, but changes the intensities. It follows, however, from
the form of the transformation for r and ^, that the relative
intensities of lines in the same band will be changed only by a
factor of the order of &2«7*/aBtu*, which is small compared with the
terms we shall retain, and too small for experimental detection.
The new mechanics is, of course, applicable to the more general
case; but the transformation, even in the simplest case, where
U'" (a) ~ 0, is very cumbersome. We shall accordingly neglect A
and observe that our results will not give us the intensities in the
overtone bands.

The transformation

k—k,

x {J* {J - h)* e8"0 - e-^Jt (J - h)*},
= p , cf>=<f>
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defines the new canonical variables (J, a>), (k, T), (p, <f>). If we
assume that these satisfy the quantum conditions, we get at once

[kp] = [kpT] = [pPr] = [<f>pr] = [<f>S] = [<f>k] = [<fo] = 0;
[P^] = [*&•]=- 1.

Moreover
(11) [rpT] = - [?rr] = ^ 1 1 (2J - 2e~ W ) = 1,

(12) i (ppr + prP) = (J - h)i Jie**" - 6-*<»J* (J - A)i
and

(13) ^Jr
2 + toy = \<a (2J + 2e-*Ve<u') = 20)^.

From the first of these (11) it follows that r and pT are canonical.

From the second (12) we get, neglecting powers of —^- above the
Cb CO

second,

and e*J = + ^B
Assuming therefore that the new variables satisfy the quantum
conditions, we have shown that the old variables satisfy all the
quantum conditions. This establishes the transformation. The as-
symmetry of r and pr, and thus of W, in J, is not peculiar to this
problem. It has its analogue in the harmonic oscillator, for which

| q (n, n + 1) |2oc n + 1.

3. Frequencies, Quantum Numbers. By (7 a) and (13)

This differs from the classical value in having Jx for J, and
forfc2.

Before we can find the frequencies, we must decide how to
assign the quantum numbers, n, m, s, corresponding to the action
variables J, k, p. The hypothesis of a normal state for the vibratory
motion means that n must be integral. The argument by which
m and s are determined is strictly analogous to that given by
Dirac* and Born, Heisenberg, and Jordan f for the Zeeman effect
of an atom with one series electron. We should expect s to be so
chosen that

P1P2 P1P2
K {fC ~~ / i j

since, otherwise by (5) z might not be real for teal s and m. This means
» Dirac, Proc. Soy. Soc. A, vol. cxi, p. 281 (1926).
t Dirac, Proc. Soy. Soc. A, voL ox, p. 561 (1926); Bom, Heisenberg, Jordan,

Zeit.f. Physik, vol. xxxv.p. 557 (1926),
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that s may vary from — m + \ to + m — \; it is readily seen from
the values we get for the intensities (18), that all transitions from
8 values within this range to those outside are forbidden. Finally,
we may choose m to give a normal state for which a transition
with decreasing m is impossible. In this case the only physical
justification for such an assumption is the observed absence of the
central line*. We shall show that the central line does not vanish
if the only condition on m is Brillouin's condition of symmetry for
positive and negative rotations.

With this assignment of quantum numbers (clearly s is ir-
relevant) we get for the absorption frequencies

(14 a)

+ "i (n + f) - v2 (n +
e>(m±l) w^ / 3/xft2 (m ± 1 + j) (m ± 1 -

~ 2 A 2 a 4 ( 0 ) 2
27T/J.

2 ~ 2 T T / X V2TT/X V 2a4(0)oV7
The difference between these and the classical frequencies is too
small for experimental detection, more particularly since a (0) and
o>0 can only be found from the band itself. The energy differences
would, however, give an appreciable term in the specific heats.

i. Intensities. We may now compute the a priori intensities of
the band lines directly. For this we need x, y, z in terms of the final
variables. In each case we have several alternative forms. Thus
(15)

r . r

But since all the transformations are canonical, these forms ought
to give the same intensities; and it may be readily verified that

they do. Now to the second order in -^—, we get, using the ex-

pansion for the exponential

njMtHiT)^
~ o n " »! o

* On Schrodinger's Theory there is no normal state for a rigid rotator in two
dimensions, and the transitions for m, (I-*•-£),(-1-*•$) occur.



vibration-rotation bands 333

Then from (5), (10) and (16),

(17) . - l [ . ( i ) + , ^ - ^
[m, (1 + ittt) e"

± Ufa (1 + t^) e""** - IB,, (1 - i^) c-"+** T Ufa (1 - ia,) e"*'"*].
A;

Now expand w~* to second order in —%-, take ô  and Og in front of

the exponentials in w, and collect the coefficients of eia and e~iv>.
This gives for the Zeeman components
(18)

| z ( - 1, - 1, 0) | = - (J^ A,)*m2 [1 - 2VWI, {1 + fy («, - n)}],

,0) | = \{~oh*f m1 [1 + 2ymi {1 -fyK + n)}],

1 /«A

*(-!.-1.-1)1 = j(2^

1) I = j (^ )

I a, (+ 1, + 1, - 1) I = 1 ( ^ i hty e K [1 - Zywi! {1 + | y (B4 - n - 1)}],

| * (y*) I; I a; («?*) I = I x [(», m, s) ̂  (n + i, m + j , s + k)] | ,
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Actually the system is degenerate. Summing the "intensities'
Zo (0, m -*• 1, m + 1) = const. [1 — 4ywi1 (1 — fyw^ — fy)] 8,

+m-\ +ni-J +TO-J
8 = Ss roj2 + i S (s) rou

a + \ 2 (s)
-m+J -m+J -m+}

1 S (nju + 2roi + tn12)
-m+i

= J .m. (4 + ! ) = 4 (m + i) =
Similarly

Zo (0, m + 1 -• 1, m) = 4.const. [1 + 4fym1 (1 + f

The intensity of the central line vanishes. But it would not have
vanished if we had made m integral, nor if we had treated the
problem in two dimensions.

For the intensities of the nth lines* (in energy, and not in
quanta)

Z+ (n) oo n (1 - 4yn (1 - fyn - |y)) e-*?W{0-*-*\v (0, n - * - 1 , n + J

7_ (n) 00 n (1 + 4yn (1 + |yn - fy)) €"^^(° l f i +*) .v(0, n + \-± 1, n -

or, at least for not too large m,

Z+(n)oone

Z.(n)ccne

This in partf resolves the paradox noted by Fowler. For the two
branches are nearly equal in intensity in spite of the assymmetry
of the temperature factor. The main part of the assymmetric
factor which compensates this had been previously obtained by
Kemble from the Coriolis forces.

This means that the summation rules do not apply exactly,
because the frequency differences of the lines of the band are not

negligible. Neglecting the factors (1 ± 4yn ...) and e " ^ , they
hold exactly. For the weights of the states are proportional to m.

I should like to thank Mr R. H. Fowler, F.R.S., and Mr P. A. M.
Dirac for their criticism and advice.

• Kemble, loc.cit. and Fowler, Phil. Mag. vol. L, p. 1079 (1925).
f For the fundamental hydrogen chloride band studied by Kemble and Fowler

the values of 4y and A*/2/*ao**T differ by only about 10 per cent.; the positive
branch remains slightly the stronger.



vibration-rotation bands 335

5. Summary. The dynamical problem of the "diatomic mole-
cule" is solved on the new mechanics. The terms of the rotational
energy are A (wa — | ) , where m = ± £ , § , $ . . . ; the weights of the
corresponding states are 2m; the frequencies differ a little from
the classical ones. Finally the intensities are slightly different from
those computed by Kemble; the main term agrees with that of
Fowler, but the positive branch is only slightly stronger than the
negative. The central line vanishes. The intensities are valid only
for the fundamental band.

6. Addendum. This problem has been treated by Schrodinger*
by his method of characteristics. Schrodinger does not find the
intensities; but he obtains energy terms which give frequencies in
agreement with (14) and (14 a). More recently the problem has been
treated by Mensingf by the method of matrices in a paper which
came to hand just as the writing of this paper was completed.
Mensing neglects y but retains A. The main terms in the intensities
of the fundamental band are, of course, the Zeeman factors of (18).
By an application of Born and Jordan's solution for the anharmonic
oscillator % Mensing also obtains expressions for the intensities in
the overtones. It is, however, readily seen from (17) that the terms
arising from y are of the same order as those arising from A, and
that, with the actual values of these constants for the hydrogen
halides, the former terms predominate for the outer lines of the
overtone bands. It is probably therefore not justified to neglect
them and retain A.

• Schrodinger, Ann. d. Phys. vol. LXXIX, p. 484 (1926). See particularly Eq. (51).
t Mensing, Zeitf. Physik, vol. xxxvr, p. 814 (1926).
t Born und Jordan, Zeit.f. Physik, vol. xxxiv, p. 838 (1925).


